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Abstract

Thermoelastic damping is recognized as a significant loss mechanism at room temperature in micro-scale beam resona-
tors. In this paper, the governing equations of coupled thermoelastic problems are established based on the generalized
thermoelastic theory with one relaxation time. The thermoelastic damping of micro-beam resonators is analyzed by using
both the finite sine Fourier transformation method combined with Laplace transformation and the normal mode analysis.
The vibration responses of deflection and thermal moment are obtained for the micro-beams with simply supported and
isothermal boundary conditions. The vibration frequency is analyzed for three boundary condition cases, i.e., the clamped
and isothermal, the simply supported and isothermal, and the simply supported and adiabatic. The analytic results show
that the amplitude of deflection and thermal moment are attenuated and the vibration frequency is increased with thermo-
elastic coupling effect being considered. In addition, it can be found from both the analytic results and the numerical cal-
culations that these properties are size-dependent. When the thickness of the micro-beam is larger than its characteristic
size, the effect of thermoelastic damping weakens as the beam thickness increases. The size-effect induced by thermoelastic
coupling would disappear when the thickness of the micro-beam is over a critical value that depends on the material prop-
erties and the boundary conditions.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Thermoelastic damping; Micro-scale beam resonator; Integration transformation; Generalized thermoelastic theory
1. Introduction

Micro-scale mechanical resonators have high sensitivity as well as fast response (Barnes et al., 1994; Stowe
et al., 1996; Mihailovich and Parpia, 1992; Yurke et al., 1995) and are widely used as sensors and modulators
(Tang et al., 1990; Mihailovich and MacDonald, 1995; Tortonese et al., 1993; Zook et al., 1996; Burns et al.,
1995; Cleland and Roukes, 1996, 1999). It is necessary to know how the parameters affect their physical prop-
erties and mechanical properties. For resonators, it is desired to design and construct systems with loss of en-
ergy as little as possible. Unfortunately, it has been consistently observed that there exists energy dissipation
that increases with size decreasing significantly—even when made from pure single-crystal materials (Lifshitz
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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and Roukes, 2000). Many researchers have discussed different dissipation mechanisms in MEMS (Akhiezer
and Berestetskii, 1965; Hosaka et al., 1995; Tilmans et al., 1992; Mihailovich and MacDonald, 1995; Zhang
et al., 2003; Carr et al., 1998; Harrington et al., 2000; Zener, 1937, 1938), such as doping impurities losses,
support-related losses, thermoelastic damping, and the Akhiezer effect (Akhiezer and Berestetskii, 1965), as
well as the radiation of energy away from the resonator into its surroundings. Mihailovich and MacDonald
(1995) measured the mechanical loss of various micron-sized vacuum-operated single-crystal silicon resona-
tors, to identify their dominant loss mechanism. They examined three possible sources of mechanical loss,
including doping-impurity losses, support-related losses and surface-related losses. Zhang et al. (2003) studied
the effect of air damping on the frequency response and the quality factor of a micro-machined beam resona-
tor. Their results indicate that air damping generally shifts the resonance frequency on the order of no more
than 10�6 and degrades the quality factor, and that this effect of air damping increases as the dimension of the
beam decreases. Harrington et al. (2000) measured mechanical dissipation in micron-sized single-crystal gal-
lium arsenide resonators that vibrate in torsion and flexural modes. They found that the resonance frequency
changes with temperature.

It has been verified that thermoelastic damping is a significant loss mechanism near room temperature in
MEMS resonators. Zener (1937) predicted the existence of the thermoelastic damping process and then
quickly verified the basic aspects of the theory experimentally. Further experiments consistent with Zener�s
theory were provided by Berry (1955) for a-brass. In the case the damping was measured as a function of fre-
quency at room temperature. Roszhardt (1990) observed thermoelastic damping in single-crystal silicon
micro-resonators at room temperature; and Yasumura et al. (1999) also reported thermoelastic damping
in silicon nitride micro-resonators at room temperature, but their measured results are an order of magnitude
smaller than Roszhart�s.

Thermoelastic vibration of beams has been widely investigated. Landau and Lifshitz (1959) provided an
exact expression for the attenuation coefficient of thermoelastic vibration, but they did not give a rigorous der-
ivation and solution of the governing equations. Massalas and Kalpakiclis (1983) analyzed the vibration of a
beam whose surface is subjected to a step heat flux. But they ignored the inertia item in order to make a sim-
plification. Givoli and Rand (1995) studied the effect of thermoelastic coupling on dynamic response proper-
ties of a rod. They found that when the frequency of the thermal loading is close to the critical frequency of the
rod, the nature of the dynamic response of the structure is changed significantly. Boley (1972) analyzed the
thermally induced vibrations of a simply supported rectangular beam. Manolis and Beskos (1980) studied
the effect of damping and axial loads on the vibration of beams induced by fast heating on the surface. They
also considered the effect of damping and axial loading, but disregarded the coupling between stress and tem-
perature fields. Copper and Pilkey (2002) presented a thermoelastic solution technique for beams with arbi-
trary quasi-static temperature distributions that create large transverse normal and shear stresses. They
calculated the stress resultants and midspan displacements along a beam. Houston et al. (2004) studied the
importance of thermoelastic damping for silicon-based MEMS. Their results indicate that the internal friction
arising from this mechanism is strong and persists down to 50 nm scale structures.

Up to date, a little of work relative to the size effect of thermoelastic damping upon vibration frequency
response for the micro-resonators has been reported. Guo and Rogerson (2003) studied the thermoelastic cou-
pling in a doubly clamped elastic prism beam and examined its size-dependence. Lifshitz and Roukes (2000)
studied thermoelastic damping of a beam with rectangular cross-sections, and found that after the Debye
peaks, the thermoelastic attenuation will be weakened as the size increases. However, the results of both
Guo and Rogerson (2003) and Lifshitz and Roukes (2000) were obtained based on the classical Fourier ther-
mal conducting equation and the effect of boundary conditions were not considered in their work.

From the above summary, it can be concluded that first the above-mentioned investigations were based on
the classical thermoelastic theory, assuming the infinite speed of heat transportation. Second, the effect of dif-
ferent boundary conditions such as mechanical supporting and heat transferring conditions at the ends of
beams were not taken into consideration. Third, studying the size effect of thermoelastic damping upon vibra-
tion frequency response for the micro-resonators is insufficient, especially for the analysis based on the gen-
eralized thermoelastic theory with non-Fourier thermal conduction equations. In this paper, the governing
equations of coupled thermoelastic problems are established based on the generalized thermoelastic theory
with one relaxation time. The thermoelastic damping of micro-beam resonators are analyzed by using both
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the finite sine Fourier transformation method combined with Laplace transformation and the normal mode
analysis (Ezzat et al., 2001). The vibration frequency response is analyzed for three boundary condition cases,
i.e., the clamped and isothermal, the simply supported and isothermal, and the simply supported and adia-
batic. A particular attention is paid to the size dependency of thermoelastic damping.
2. Description of thermoelastic damping

An elastic wave dissipates energy due to intrinsic and extrinsic mechanisms. Some of the extrinsic mecha-
nisms are affected by changes of environment; for example, air damping can be minimized under ultrahigh-
vacuum (UHV) conditions. The intrinsic dissipation mechanism can be regarded as phonon–phonon interac-
tion, namely the scattering of acoustic phonons with thermal phonons (Lifshitz and Roukes, 2000).

When an elastic solid is set in motion, it is taken out of equilibrium, having an excess of kinetic and poten-
tial energy. The coupling of the strain field to a temperature field provides an energy dissipation mechanism
that allows the system to relax back to equilibrium. This process of energy dissipation, called thermoelastic
damping, is what we will discuss in this paper.

Zener (1937, 1938) firstly studied the transverse vibration of thin reeds and developed the thermoelastic
damping theory. Thermoelastic damping arises from thermal currents generated by compression/decompres-
sion in elastic media. The bending of the reed causes dilations of opposite signs to exist on the upper and lower
halves. One side is compressed and heated, and the other side is stretched and cooled. Thus, in the presence of
finite thermal expansion, a transverse temperature gradient is produced. The temperature gradient generates
local heat currents, which cause increase of the entropy of the reed and lead to energy dissipation. The tem-
perature across the reed equalizes in a characteristic time sR, while the flexural period of the reed is x�1 (x is
the vibration frequency of the reed). In the low-frequency range, i.e., sR� x�1, the vibrations are isothermal
and a small amount of energy is dissipated. On the other hand, for sR� x�1, adiabatic conditions prevail
with low-energy dissipation similar to the low-frequency range. While sR � x�1, stress and strain are out
of phase and a maximum of internal friction occurs. This is the so-called Debye peak. For a beam of thickness,
h, with a rectangular cross-section, its characteristic time is
sRðT Þ ¼ ðh=pÞ2D�1ðT Þ; ð1Þ

where T is the temperature of the beam and D = k/qcv, the thermal diffusion coefficient, in which q, k and
cv are the density, thermal conductivity and specific heat at constant volume, respectively. The vibration
frequency of a reed is
x ¼ q2h

L2

ffiffiffiffiffiffiffiffi
E

12q

s
; ð2Þ
where E is the Young�s modulus; L, the beam length, and the allowed values of q are determined by the sup-
porting conditions at the two ends of the beam. For beams with both ends clamped q = 4.73, while q = p for
beams with both ends simply supported.

In Zener�s theory (1937, 1938), the classical Fourier thermal conduction theory is applied and there is no
heat flow perpendicular to the surfaces of the beam. Thus, the internal friction, Q�1 (Q is the quality factor
defined by Zener, 1937), is defined as follows:
Q�1 ¼ a2
TTE
Cp

xsR

1þ x2s2
R

; ð3Þ
where Cp is the specific heat at constant pressure; aT, the coefficient of linear thermal expansion; T, the tem-
perature of the reed and x and sR are defined in Eqs. (1) and (2).

Lifshitz and Roukes (2000) gave another expression for the thermoelastic damping by
Q�1 ¼ a2
TTE
Cp

6

n2
� 6

n3

sinh nþ sin n
cosh nþ cos n

� �
ð4Þ
in which n ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffi
x=2D

p
.
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Note that Zener used the classical thermoelastic theory assuming infinite speed of heat transportation.
While this paper uses the generalized thermoelastic theory with the non-Fourier thermal conduction equation
to modify Zener�s theory.

In Zener�s study, the size of the beam was fixed and the two ends of the beams were clamped. In this paper
the effect of both the beam size and the mechanical and thermal boundary conditions at the two ends are taken
into consideration.

3. Formulation of basic equations

Beams with rectangular cross-sections are mostly employed in MEMS resonators. A micro-resonator can
be modeled as an elastic prism beam with either doubly clamped or simply supported ends. Here we consider
small flexural deflections of a thin elastic beam with dimensions of length L (0 6 x 6 L), width b (�b/
2 6 y 6 b/2) and thickness h (�h/2 6 z 6 h/2). We define the x axis along the axis of the beam and the y

and z axes correspond to the width and thickness, respectively. In equilibrium, the beam is unstrained, un-
stressed, and at temperature T0 everywhere. There is no flow of heat across the upper and lower surfaces
of the beam so that oh/oz = 0 at z = ±h/2.

The usual Euler–Bernoulli assumption is made so that any plane cross-section, initially perpendicular to the
axis of the beam, remains plane and perpendicular to the neutral surface during bending. Thus, the displace-
ments can be given by
u ¼ �z
dw
dx
; v ¼ 0; wðx; y; z; tÞ ¼ wðx; tÞ; ð5Þ
where t is time. The one-dimensional constitutive equation is
rx ¼ �Ez
o2w
ox2
� bh; ð6Þ
where E is the Young�s modulus; h = T � T0, the temperature increment of the resonator; and b =
EaT/(1 � 2m) the thermal modulus in which aT is the coefficient of linear thermal expansion and m, the Poison�s
ratio. Then the flexure moment of the cross-section is given as follows:
Mðx; tÞ ¼ �
Z h

2

�h
2

brxzdz ¼ EI
o

2w
ox2
þ bb

Z h
2

�h
2

hzdz; ð7Þ
where I = bh3/12 is the inertia moment of the cross-section. If the thermal moment, MT ¼ bb
R h

2

�h
2
hzdz, is de-

noted, Eq. (7) can be rewritten as
Mðx; tÞ ¼ EI
o

2w
ox2
þMT. ð8Þ
The equation of transverse motion for a beam is
o2M
ox2
þ qA

o2w
ot2
¼ 0; ð9Þ
where q is the density; A = bh, the cross-section area; and EI, the flexural rigidity of the beam.
Substituting Eq. (8) into Eq. (9), we can get the motion equation of the beam as follows:
EI
o4w
ox4
þ o2MT

ox2
þ qA

o2w
ot2
¼ 0. ð10Þ
The non-Fourier thermal conduction equation containing the thermoelastic coupling term has the following
form:
kh;ii ¼ qcv
oh
ot
þ bT 0

oui;i

ot
þ s0qcv

o
2h

ot2
þ s0bT 0

o
2ui;i

ot2
; ð11Þ
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where T0 is the reference temperature; cv, the specific heat at constant volume; s0, the thermal relaxation time;
and k, the thermal conductivity.

Substituting the Euler–Bernoulli assumption, namely Eq. (5), into Eq. (11) gives the thermal conduction
equation for the beam,
k
o

2h
ox2
þ k

o
2h

oz2
¼ cvq

oh
ot
� T 0bz

o
3w

ox2 ot
þ s0cvq

o
2h

ot2
� s0T 0bz

o
4w

ox2 ot2
. ð12Þ
Multiplying Eq. (12) by means of bbz and integrating it with respect to z from �h/2 to h/2, yield
k
o

2MT

ox2
þ k

Z h
2

�h
2

bbz
o

2h
oz2

dz� cvq
oMT

ot
þ T 0b

2I
o

3w
ox2 ot

� s0cvq
o

2MT

ot2
þ s0T 0b

2I
o

4w
ox2 ot2

¼ 0. ð13Þ
For a very thin beam, assuming that the temperature increment varies in terms of a sinðpzÞ function along the
thickness direction, where p ¼ p

h, gives
MT ¼ bb
Z h

2

�h
2

hzdz ¼ bb
p2

hjh=2
�h=2 � z

oh
oz

����h=2

�h=2

" #
¼ � 1

p2

Z h
2

�h
2

bb
o

2h
oz2

zdz. ð14Þ
Substituting Eq. (14) into Eq. (13), leads to
k
o

2MT

ox2
� kp2MT � cvq

oMT

ot
þ T 0b

2I
o

3w
ox2 ot

� s0cvq
o

2MT

ot2
þ s0T 0b

2I
o

4w
ox2 ot2

¼ 0. ð15Þ
Now the governing equations for the coupled thermoelastic problem can be obtained as follows:
EI
o4w
ox4
þ o2MT

ox2
þ qA

o2w
ot2
¼ 0;

k
o

2MT

ox2
� kp2MT � cvq

oMT

ot
þ T 0b

2I
o

3w
ox2 ot

� s0cvq
o

2MT

ot2
þ s0T 0b

2I
o

4w
ox2 ot2

¼ 0.

8>>><>>>: ð16Þ
The following dimensionless quantities are defined to transform Eq. (16) into non-dimensional form:
n ¼ x
L
; W ¼ w

h
; s ¼ te

L
; e ¼

ffiffiffiffi
E
q

s
; H ¼ MT

EAh
; ð17Þ
where W is the dimensionless deflection and H, the dimensionless thermal moment. Then Eq. (16) becomes
o2W
os2
þ A1

o4W

on4
þ o2H

on2
¼ 0;

o2H

on2
� A2H� A3

oH
os
þ A4

o3W

on2
os
� A5

o2H
os2
þ A6

o4W

on2
os2
¼ 0.

8>>><>>>: ð18Þ
The coefficients in Eq. (18) are
A1 ¼
h2

12L2
; A2 ¼ p2L2; A3 ¼

cvqeL
k

; A4 ¼
T 0b

2h2e
12kEL

; A5 ¼
s0cvE

k
; A6 ¼

s0T 0b
2h2

12qkL2
. ð19Þ
If the thermoelastic coupling effect is disregarded, the governing equations consisting of the non-Fourier ther-
mal conduction equation and the motion equation of the beam can be expressed as
k
o

2h
ox2
þ k

o
2h

oz2
¼ qcv

oh
ot
þ s0qcv

o
2h

ot2
;

EI
o4w
ox4
þ qA

o2w
ot2
¼ 0.

8>>><>>>: ð20Þ
Comparing Eq. (16) with Eq. (20) shows that it is much more difficult to solve the governing equation of the
coupled thermoelastic case than to solve that of the uncoupled case.
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4. Solutions and results

It is challenging to solve the governing equations considering the thermoelastic coupling effect (i.e., Eq.
(18)). In this paper, two methods are used to analyze the thermoelastic coupling effect of the micro-beam res-
onators. Firstly, the integration transformation method is employed to solve Eq. (18) for micro-beams with
two simply supported and isothermal ends. In this case, the damping characteristics of deflection and thermal
moment vibration are analyzed. Secondly, the normal mode analysis is used to solve Eq. (18) for micro-beams
with different supporting and heat transferring boundary conditions at the two beam-ends. The vibration fre-
quency response is analyzed for three boundary-condition cases, such as the clamped and isothermal, the sim-
ply supported and isothermal, and the simply supported and adiabatic. In addition, the results obtained by
using the normal mode analysis are compared with the numerical results based on the finite difference method.
The analysis and discussion is emphasized particularly on the size effect of thermoelastic damping.

4.1. Analysis based on integration transformation method

When the two ends of the micro-beams are simply supported and held at a constant temperature, the
boundary conditions are given by
W jn¼0 ¼ W jn¼1 ¼ 0;

o2W

on2

����
n¼0

¼ o2W

on2

����
n¼1

¼ 0;

Hjn¼0 ¼ Hjn¼1 ¼ 0.

8>>><>>>: ð21Þ
To solve Eq. (18), a finite sine Fourier transformation can be used:
W mðm; sÞ ¼
R 1

0
W ðn; sÞ sinðrmnÞdn;

Hmðm; sÞ ¼
R 1

0
Hðn; sÞ sinðrmnÞdn;

(
ð22Þ
where rm = mp, m = 1,3,5 . . .
The solutions of Eq. (22) automatically satisfy to the boundary conditions (i.e., Eq. (21)). Based on the

Fourier series theory, the inverse transformation towards Eq. (22) can be expressed by
W ðn; sÞ ¼ 2
P1

m¼1;3;...

W mðm; sÞ sinðrmnÞ;

Hðn; sÞ ¼ 2
P1

m¼1;3;...

Hmðm; sÞ sinðrmnÞ.

8>>><>>>: ð23Þ
In a case that a uniform force, F, is applied on the upper surface of the beam, the initial conditions can be set
as follows:
W js¼0 ¼ Mðn� 2n3 þ n4Þ;
oW
os

����
s¼0

¼ 0;

Hjs¼0 ¼ 0;

oH
os

����
s¼0

¼ 0;

8>>>>>>>><>>>>>>>>:
ð24Þ
where M is a constant relevant to the uniform force load.
Applying transformation (i.e., Eq. (22)) to Eq. (18) and Eq. (24) leads to
o2W m

os2
þ A1r4

mW m � r2
mHm ¼ 0;

ðr2
m þ A2ÞHm þ A3

oHm

os
þ A4r2

m

oW m

os
þ A5

o2Hm

os2
þ A6r2

m

o2W m

os2
¼ 0;

8>><>>: ð25Þ
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W mjs¼0 ¼
48

r5
m

M ;

oW m

os

����
s¼0

¼ 0;

Hmjs¼0 ¼ 0;

oHm

os

����
s¼0

¼ 0.

8>>>>>>>>>><>>>>>>>>>>:
ð26Þ
The Laplace transformation is applied to solve Eq. (25) with regard to the initial conditions (i.e., Eq. (26)).
Thus, the solution of Wm in the Laplace transformation domain can be given by
eW m ¼
48Mðb0 þ b1sþ b2s2 þ b3s3Þ

r5
mðc0 þ c1sþ c2s2 þ c3s3 þ c4s4Þ ; ð27Þ
where
b0 ¼ A4r4
m;

b1 ¼ r4
mA6 þ r2

m þ A2;

b2 ¼ A3;

b3 ¼ A5;

c0 ¼ A1r6
m þ A1A2r4

m;

c1 ¼ ðA4 þ A1A3Þr4
m;

c2 ¼ ðA6 þ A1A5Þr4
m þ r2

m þ A2;

c3 ¼ A3;

c4 ¼ A5.

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð28Þ
After taking the inverse Laplace transform of Eq. (27), we can obtain the solution of Wm as
W mðm; sÞ ¼
48M

r5
m

X
a

ðb0 þ b1aþ b2a2 þ b3a3Þeas

c1 þ 2c2aþ 3c3a2 þ 4c4a3
; ð29Þ
where a denotes the four solutions to equation c0 + c1a + c2a
2 + c3a

3 + c4a
4 = 0. Thus, according to Eq. (23),

the deflection can be obtained as follows:
W ðn; sÞ ¼ 2
X1

m¼1;3;...

W mðm; sÞ sinðrmnÞ ¼ 96M
X1

m¼1;3;...

1

r5
m

X
a

ðb0 þ b1aþ b2a2 þ b3a3Þeas

c1 þ 2c2aþ 3c3a2 þ 4c4a3
sinðrmnÞ. ð30Þ
In terms of Eq. (30), we can analyze the effect of thermoelastic coupling by considering a beam made of
silicon E = 169 GPa, q = 2330 kg/m3, cv = 713 J/kg K, aT = 2.59 · 10�6 K�1, m = 0.22 and k = 156 W/m K
(Duwel et al., 2003). The reference temperature of the micro-beam is T0 = 293 K. The aspect ratios of the
beam are fixed as L/h = 10 and b/h = 1/2. When h is varied, L and b change accordingly with h. As an exam-
ple, we may set such a value of the micro-beam thickness as h/h0 = 0.5 (h0 = 20 lm is the basic thickness used
in this paper) in the calculation. Considering its first vibration mode, i.e., m = 1, we can get the following
vibration functions:
W 1ð1; sÞ ¼ �0:7587� 10�10e�1:177�104s þ 0:1568e�0:3049�10�4s cosð0:2850sÞ þ 7:577� 10�5e�0:1098s

þ 0:4598� 10�4e�0:3049�10�4s sinð0:2850sÞ ð31Þ

H1ð1; sÞ ¼ �0:1350� 10�17e�1:177�104s � 0:7158� 10�6e�0:3049�10�4s cosð0:2850sÞ þ 0:7158� 10�6e�0:1098s

þ 0:2758� 10�6e�0:3049�10�4s sinð0:2850sÞ ð32Þ
Therefore, it can be found from Eqs. (31) and (32) that its nature frequency is X1 = 0.2850, and the dimen-
sionless deflection, W, has the same frequency as the dimensionless thermal moment, H.
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For a simply supported beam, if the thermoelastic damping effect is ignored, its deflection solution is
Fig. 1
thermo

Fig. 2.
h/h0 =
W 0ðn; sÞ ¼
X1

n¼1;3;5;...

96M
n5p5

cos

ffiffiffi
3
p

n2p2h
6L

s

 !
sinðnpnÞ. ð33Þ
The vibration frequency of the beam is
X0 ¼
ffiffiffi
3
p

n2p2h
6L

. ð34Þ
Substituting n = 1 into Eq. (34) gives its nature frequency of X0 = 0.2849. If h/L maintains the same value, its
nature frequency is a constant.

Fig. 1 is the dynamic midspan deflection of the simply supported beam with the thickness of h/h0 = 0.5 for
the coupled thermoelastic case. It can be seen from Eq. (31) that the vibration of the beam decays with time
increasing when the coupling between the strain and temperature fields is taken into account, while a steady
state mode of vibration is established when the coupling is ignored. Since the vibration of the micro-beam
weakens so slowly that it is hardly distinguished from the curve in Fig. 1, the difference between W and
W0 is shown in Fig. 2 to see the vibration decay caused by thermoelastic damping. Fig. 3 shows the midspan
thermal moment of the simply supported beam with the thickness of h/h0 = 0.5 for the coupled thermoelastic
. Dimensionless dynamic midspan deflection of the simply supported beam with the thickness of h/h0 = 0.5 for the coupled
elastic case.

The deflection difference (W0 �W) of the uncoupled and coupled cases for the simply supported beam with the thickness of
0.5.



Fig. 3. Dimensionless midspan thermal moment of the simply supported beam with the thickness of h/h0 = 0.5 for the coupled
thermoelastic case.
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case. It can be found from Fig. 3 that the decay of the dimensionless thermal moment is significant. Figs. 1–3
indicate that the deflection vibrates in a quasi-steady state mode while the thermal moment exhibits a jump at
the beginning and then reaches its quasi-steady state mode of vibration quickly.

Fig. 2 shows that the amplitude of W0 �W increases quickly, that is, the amplitude of W decreases. This
means that the mechanical energy of the beam is dissipated. Note that the time range in Fig. 1 is small. In fact,
the attenuation of W is significant in the longer time duration. The small inset plot in Fig. 4 shows the dynamic
midspan deflection of the simply supported beam with the thickness of h/h0 = 0.5 during a dimensionless time
range of s = 0–20,000. Indeed, the deflection amplitude exhibits considerable attenuation in a long time range.
The calculated results show that the attenuation of W changes with the change of the beam thickness. Fig. 4
gives the envelope curves of dimensionless deflection for beams with different thickness (h/h0 = 0.1, h/h0 = 0.2,
h/h0 = 0.5, h/h0 = 2.0) in the dimensionless time range of s = 0–2 · 104. From the envelope curves, we can
draw a conclusion that when the size of the thickness decreases, the deflection amplitude attenuation increases,
which means that the effect of thermoelastic damping enhances.

The characteristic time (sR) for heat flux to reach equilibrium was defined by Zener (1937, 1938) as given in
Eq. (1). When sR = x�1 (the vibration frequency, x, is given in Eq. (2)), the attenuation reaches the maximum,
and we can get the characteristic thickness from this expression. In this paper, we discuss silicon beams with
the aspect ratios fixed as L/h = 10 and b/h = 1/2. Thus, the characteristic thickness for the beam with both
Fig. 4. Envelope curves of dimensionless deflection for micro-beams with different thickness values (s = 0–2 · 104). Inset plot: dynamic
midspan deflection of the simply supported beam with the thickness of h/h0 = 0.5 (s = 0–20,000).
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ends simply supported is hcs = 3.819 lm. When the thickness of the beam gets larger, sR > x�1, and the vibra-
tion of the micro-beam inclines to the adiabatic condition and energy dissipation becomes smaller. As an
example, the case of micro-beams with both ends simply supported is examined. It can be seen from the enve-
lope curves for different thickness values in Fig. 4 that the curve of h/h0 = 0.2 declines most significantly. In the
other word, when the thickness, h, reaches its characteristic thickness, the attenuation becomes stronger as
shown in Fig. 4. Therefore, it may be concluded that when the thickness of the micro-beam is larger than
its characteristic size, the effect of thermoelastic damping weakens as the beam thickness increases.

Fig. 5 shows the vibration response of dimensionless thermal moment H for beams with different thickness
values in the dimensionless time range of s = 0–100. Comparing with the vibration deflection, the vibration
response of thermal moment H is more significant. Fig. 6 illustrates the envelope curves of dimensionless ther-
mal moment H for beams with different thickness values in a longer dimensionless time range of s = 0–1 · 105.

Fig. 5 demonstrates that the thermal moment curve has a jump in the beginning and then reaches quasi-
steady vibration quickly. Fig. 6 indicates that after longer time, the thermal moment attenuates significantly.
The thermal moment vibration curves vary with the change of thickness in different time ranges. The jump
varies with the change of thickness. When the thickness decreases, the jump decreases, and the beam need less
time to reach quasi-steady state of vibration.
Fig. 5. Dimensionless midspan thermal moment H for micro-beams with different thickness values (s = 0–100).

Fig. 6. Envelope curves of dimensionless thermal moment H for micro-beams with different thickness values (s = 0–1 · 105).
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When a resonator is driven into vibration externally, the energy is dissipated and transferred from this
mode to other degrees of freedom or into the environment. When an initial displacement is applied to an elas-
tic beam, the beam will vibrate, and the vibration amplitude will attenuate with time, due to the thermoelastic
coupling effect. The dissipated energy is transferred from a particular mode of the resonator, which is driven
externally, to energy reservoirs formed by all the other degrees of freedom of the system. In this paper, the
energy change is represented by means of both the attenuation of the deflection amplitude and the variation
of the thermal moment. The amount of the mechanical energy dissipation caused by thermoelastic damping
can be expressed in terms of the internal friction, Q�1 (Zener, 1937; Lifshitz and Roukes, 2000). According to
Zener�s theory (1937,1938a, 1938b), Q�1 decreases as the beam size increases when the beam�s thickness is lar-
ger than the characteristic size. According to the result of Manolis and Beskos (1980), when the internal fric-
tion increases, the vibration attenuation induced by thermoelastic damping increases and the nature frequency
increases. In the next section, therefore, we will concentrate on analyzing the size effect of vibration frequency
due to thermoelastic damping.

4.2. Normal mode analysis

The normal mode analysis is applied in this section to analyze the vibration frequency shift relative to ther-
moelastic damping for three boundary cases, such as the clamped and isothermal, the simply supported and
isothermal, and the simply supported and adiabatic at the two ends of the micro-beams. The analysis is limited
to the vibration frequency characteristics due to the length of the paper. At first, we consider such a case that
the two ends are clamped and isothermal. The boundary conditions are given by
W jn¼0 ¼ W jn¼1 ¼ 0;

oW
on

����
n¼0

¼ oW
on

����
n¼1

¼ 0;

Hjn¼0 ¼ Hjn¼1 ¼ 0.

8>>><>>>: ð35Þ
Because it is difficult to separate the variables in this case, we employ the normal mode analysis to solve the
governing equations and analyze its frequency characteristics (Guo and Rogerson, 2003). The calculations in
the previous section show that deflection, W, and thermal moment, H, vibrate in the same frequency. There-
fore, both quantities change harmonically (Guo and Rogerson, 2003), i.e.,
W ¼ W ðnÞeiXs;

H ¼ HðnÞeiXs;

�
ð36Þ
where X is the dimensionless frequency. We expect to find that in general the frequencies are complex, the real
part Re(X) giving the new eigenfrequencies of the beam in the presence of thermoelastic coupling effect, and
the imaginary part jIm(X)j giving the attenuation of the vibration.

Substituting Eq. (36) into Eq. (18) gives
� X2W ðnÞ þ A1W ð4ÞðnÞ þH00ðnÞ ¼ 0; ð37aÞ
H00ðnÞ � ðA2 þ iXA3 � A5X

2ÞHðnÞ þ ðiXA4 � A6X
2ÞW 00ðnÞ ¼ 0. ð37bÞ
Elimination of H00(n) from Eqs. (37a) and (37b) results in
HðnÞ ¼ ðX2W þ ðiXA4 � A6X
2ÞW 00 � A1W ð4ÞÞ=ðA2 þ iXA3 � A5X

2Þ. ð38Þ

Substituting Eq. (38) into Eq. (37a) gives
a1W ð6ÞðnÞ þ a2W ð4ÞðnÞ þ a3W ð2ÞðnÞ þ a4W ðnÞ ¼ 0; ð39Þ

where
a1 ¼ A1=ðA2 þ iXA3 � A5X
2Þ;

a2 ¼ �ðA1 þ ðiXA4 � A6X
2Þ=ðA2 þ iXA3 � A5X

2ÞÞ;
a3 ¼ �X2=ðA2 þ iXA3 � A5X

2Þ;
a4 ¼ X2.

8>>><>>>: ð40Þ
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Then the solution of dimensionless deflection W(n) is given by
W ðnÞ ¼
X3

i¼1

ðBi sinhðkinÞ þ Ci coshðkinÞÞ; ð41Þ
where, ±ki, i = 1,2,3, are the roots of equation a1k
6 + a2k

4 + a3k
2 + a4k = 0, and Bi, Ci are constants.

Since we have got the deflection, we can substitute Eq. (41) into Eq. (38) to get the solution of the thermal
moment H(n):
HðnÞ ¼
X3

i¼1

ðdiBi sinhðkinÞ þ diCi coshðkinÞÞ ð42Þ
in which
di ¼ ðX2 þ ðiXA4 � A6X
2Þk2

i � A1k
4
i Þ=ðA2 þ iXA3 � A5X

2Þ. ð43Þ

Substitute Eqs. (41) and (42) into the boundary conditions, i.e., Eq. (35), we have
P3

i¼1

Ci ¼ 0;

P3
i¼1

ðBi sinhðkiÞ þ Ci coshðkiÞÞ ¼ 0;

P3
i¼1

kiBi ¼ 0;

P3
i¼1

ðkiBi coshðkiÞ � kiCi sinhðkiÞÞ ¼ 0;

P3
i¼1

diCi ¼ 0;

P3
i¼1

ðdiBi sinhðkiÞ þ diCi coshðkiÞÞ ¼ 0.

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð44Þ
In order to get non-trivial solutions, the constants Bi and Ci must be non-zero. Therefore, we obtain the fol-
lowing frequency equation:
0 1 0 1 0 1

sinhðk1Þ coshðk1Þ sinhðk2Þ coshðk2Þ sinhðk3Þ coshðk3Þ
k1 0 k2 0 k3 0

k1 coshðk1Þ k1 sinhðk1Þ k2 coshðk2Þ k2 sinhðk2Þ k3 coshðk3Þ k3 sinhðk3Þ
0 d1 0 d2 0 d3

d1 sinhðk1Þ d1 coshðk1Þ d2 sinhðk2Þ d2 coshðk2Þ d3 sinhðk3Þ d3 coshðk3Þ

��������������

��������������
¼ 0. ð45Þ
The dimensionless frequency X may be obtained through solving Eq. (45).
Note that if the thermoelastic coupling effect is ignored, the dimensionless vibration frequency of the beam

with both ends clamped can be expressed as
X0 ¼
ffiffiffi
3
p

b2
i h

6L
ð46Þ
where bi is the ith positive root of equation cosðxÞ coshðxÞ ¼ 1, and its first three values are 4.730, 7.853,
10.996, respectively.

Now we analyze the frequency variation with the change of thickness of the micro-beam, h. In order to
verify the validity of the analytical solution of Eq. (45), we also numerically solve Eq. (18) using the finite dif-
ference method directly and compare the numerical results with the analytical results of Eq. (45). Comparisons
are made with the analytic results of the coupled normal mode theory and with the numerical results calcu-
lated directly from using the finite difference method.
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Fig. 7 illustrates the change of the dimensionless first-mode frequency with the change of thickness of the
beam. The beam thickness varies from h/h0 = 0.1 to h/h0 = 1.0, which is larger than its characteristic thickness
(for a beam clamped at both ends, the characteristic length is hcc = 1.685 lm). According to the analysis in
Section 4.1, the vibration frequency of the beam will decrease as the dimension of the beam increases, as is
presented in Fig. 7. To see the scale effect, the vibration frequency of the uncoupled thermoelastic problem
is also presented in Fig. 7 as the solid-square marked horizontal line. The results of coupled thermoelastic
problems conclude the analytic results of Eq. (45) and the numerical results of Eq. (18) via the finite difference
method.

Fig. 7 shows that the analytic results of Eq. (45) are in good agreement with the numerical results of Eq.
(18), and the difference between the two methods decreases as the thickness of the beam increases. When the
thickness of the beam increases to h/h0 = 1.0, they are almost of the same value. Fig. 7 demonstrates that the
dimensionless frequency is size-dependent when the effect of thermoelastic coupling is considered. This is be-
cause the coefficients A3 and A4 in the dimensionless Eq. (18) are size-dependent. In contrast, the dimension-
less frequency only depends upon the ratio of thickness to length as shown in Eq. (45) when the thermoelastic
coupling effect is disregarded. From the curves in Fig. 7 we can see that the thermoelastic coupling generally
shifts the vibration frequency and this effect increases as the thickness of the micro-beam decreases. However,
the decreasing rate of the vibration frequency (i.e., the slop of the curve) declines considerably as the beam
thickness increases. When the thickness of the micro-beam reaches a critical value (say over 20 lm for a given
silicon material and at the specified boundary condition), the curve is close to the horizontal line correspond-
ing to the uncoupled thermoelastic problem. Note that the slope of the curve is close to zero after the beam
thickness is over the critical value. It may be expected, therefore, that the size-effect induced by thermoelastic
coupling would disappear when the thickness of the micro-beam reaches a critical value that is not a universal
constant, but depends on the material properties and the boundary conditions.

To give a summarization, we need to analyze frequencies of micro-beams with different boundary
conditions.

When the two ends of the beam are simply supported and isothermal, the boundary conditions are shown in
Eq. (21). Substituting expressions of deflection and thermal moment, i.e., Eqs. (41) and (42), into the boundary
conditions (i.e., Eq. (21)), yields the following frequency equation:
0 1 0 1 0 1

sinhðk1Þ coshðk1Þ sinhðk2Þ coshðk2Þ sinhðk3Þ coshðk3Þ
0 k2

1 0 k2
2 0 k2

3

k2
1 sinhðk1Þ k2

1 coshðk1Þ k2
2 sinhðk2Þ k2

2 coshðk2Þ k2
3 sinhðk3Þ k2

3 coshðk3Þ
0 d1 0 d2 0 d3

d1 sinhðk1Þ d1 coshðk1Þ d2 sinhðk2Þ d2 coshðk2Þ d3 sinhðk3Þ d3 coshðk3Þ

��������������

��������������
¼ 0. ð47Þ
Fig. 7. Variation of the dimensionless natural frequency with the change of thickness of the beam (h0 = 20 lm).



Table 1
Frequency shift ratio via beam thickness for micro-beams with three boundary conditions: (a) both ends simply supported and isothermal;
(b) both ends simply supported and adiabatic; (c) both ends clamped and isothermal (h0 = 20 lm)

h/h0 Frequency shift ratio, (X � X0)/X0 (·10�4)

X0 = 0.2849 X0 = 0.2849 X0 = 0.6458

0.2 6.864 6.697 56.25
0.5 2.775 2.708 22.30
1.0 0.5898 0.5587 4.703
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When the two ends of the beam are simply supported and adiabatic, the boundary conditions become
W jn¼0 ¼ W jn¼1 ¼ 0;

o2W

on2

����
n¼0

¼ o2W

on2

����
n¼1

¼ 0;

oH
on
jn¼0 ¼

oH
on
jn¼1 ¼ 0.

8>>>>><>>>>>:
ð48Þ
Substituting Eqs. (41) and (42) into the boundary conditions (i.e., Eq. (48)) gives
0 1 0 1 0 1

sinhðk1Þ coshðk1Þ sinhðk2Þ coshðk2Þ sinhðk3Þ coshðk3Þ
0 k2

1 0 k2
2 0 k2

3

k2
1 sinhðk1Þ k2

1 coshðk1Þ k2
2 sinhðk2Þ k2

2 coshðk2Þ k2
3 sinhðk3Þ k2

3 coshðk3Þ
d1k1 0 d2k2 0 d3k3 0

d1k1 coshðk1Þ d1k1 sinhðk1Þ d2k2 coshðk2Þ d2k2 sinhðk2Þ d3k3 coshðk3Þ d3k3 sinhðk3Þ

��������������

��������������
¼ 0. ð49Þ
The vibration frequencies under the two boundary conditions can be obtained by solving Eqs. (47) and (49),
respectively. Table 1 shows frequency shift ratio (X � X0)/X0 under three kinds of boundary conditions, where
X0 is the dimensionless frequency of the uncoupled problems.

Table 1 shows the effect of the boundary conditions on frequency shift ratio. The frequency shift ratio for
beams with both ends clamped is a little larger, and on the order of 10�3. While for beams with both ends
simply supported, the frequency shift ratio is on the order of 10�4. It is interesting to notice from the table
that the frequency shift ratio is higher for beams with both ends isothermal than that for beams with both
ends adiabatic.

5. Discussion

Zhang et al. (2003) analyzed the air damping effect on the damping ratio and resonant frequency shift ratio
of beams with both ends clamped. The damping ratio obtained by them is
f1 ¼
alL2

h2bq2

ffiffiffiffiffiffi
3

Eq

s
. ð50Þ
The shift ratio of the resonant frequency was given by them as follows:
Dx ¼ p1 � x1

p1

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2f2

1

q
; ð51Þ
where q = 4.73, a is a constant related to Reynolds number, and l is the dynamic viscosity of the air.
Zhang et al. (2003) gave the parameters as a = 10 and l = 1.81 · 10�5 N s/m2. For a beam with the thick-

ness of h = 10 lm and both ends clamped, substituting these parameters into Eqs. (50) and (51) yields the
values: f1 = 1.412 · 10�5, Dx = 2 · 10�10.
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However, in our calculation, the corresponding values are f1 = 3.276 · 10�5, Dx = 2.230 · 10�3. These
results indicate that the effect of thermoelastic damping is larger than the effect of air damping for
micro-beam resonators at room temperature. The effect of air damping is affected by the changes of envi-
ronment. For example, it can be minimized under ultrahigh-vacuum (UHV) conditions. While thermoelastic
damping is an intrinsic dissipation mechanism and will not be affected by the changes of environment.
Therefore, it is more important to study the effect of thermoelastic damping on the mechanical behavior
of MEMS.

We have made some simplifications and assumptions that would be summarized here.

(1) The usual Euler–Bernoulli assumption for a thin beam undergoing small flexural vibrations is made. Our
results do not hold for large amplitude vibrations, where non-linear behavior begins to take over.
Besides, they do not hold for thick and short beams, for which the Timoshenko assumption should
be considered.

(2) In this study, the general coupled thermoelastic formulation is adapted, which is based on the continuum
theory frame. Therefore, the whole analysis relative to thermoelastic damping for the micro-beam reso-
nators does not involve in any micro-mechanisms. This is because the phonon mean free path (about
20–100 nm) is much smaller than the geometric length of the micro-beams (i.e., at the scale of micron),
and the system remains in the diffusive regime. If the thickness of the beam is decreased until into the
nanometer scale, the phonon mean free path becomes comparable to the beam thickness, where the
transport of thermal energy crosses over from being diffusive to being ballistic, and other formulations
should be used.

(3) The material�s thermal expansion coefficient aT is expressed as aT = (1/L)oL/oT. From its expression, we
can see that it is temperature dependent. Under low temperature, aT is small and the thermoelastic
damping is no longer significant, but it is an important mechanism of energy dissipation at room
temperature.

(4) The material�s thermal expansion coefficient aT also depends on the size of the beam. Since we use a con-
stant value of aT in the present study for simplification, there exist some errors in the calculations. Nev-
ertheless, main characteristics relative to the effects of thermoelastic damping on the vibration behavior
of the micro-beam resonators can still be captured.

6. Conclusions

This paper analyzes the effect of thermoelastic coupling on deflection amplitudes, thermal moment ampli-
tudes as well as vibration frequencies and proves that thermoelastic damping is a significant loss mechanism at
room temperature for micro-scale beam resonators.

Given the same initial displacement, beams in smaller size experience larger volume change and higher tem-
perature gradient, which lead to more energy dissipation, namely faster attenuation of the vibration ampli-
tude. That is, the thermoelastic damping of micro-beam resonators exhibits obvious size effect. The results
indicate that the deflection and the thermal moment vibrate in the same frequency. For the thermal moment,
there exists a jump at the beginning, and then it reaches a quasi-steady vibration state. In a long time range,
both the dimensionless deflection and the thermal moment attenuate with time obviously. The thermoelastic
damping process is affected by the supporting and heat transfer conditions at the two ends of the micro-beam.
The calculated results show that the frequency shift ratio is on the order of 10�3 for beams with the two ends
clamped, while it is on the order of 10�4 for beams with the two ends simply supported. Furthermore, the fre-
quency shift ratio for beams with the two ends held at constant temperature is higher than that for beams with
the two ends adiabatic.

Both the analytic and the numerical results indicate that the dimensionless frequency is scale-dependent
with thermoelastic coupling being considered. When the thickness, h, reaches its characteristic thickness,
the vibration attenuation of the micro-beam becomes stronger. That is, when the thickness of the micro-beam
is larger than its characteristic size, the effect of thermoelastic damping weakens as the beam thickness
increases.
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Comparing to air damping, the results demonstrate that the effect of thermoelastic damping is larger than
the effect of air damping for micro-beam resonators at room temperature. Since thermoelastic damping is an
intrinsic dissipation mechanism and will not be affected by the changes of environment, it is more important to
study the effect of thermoelastic damping on the mechanical behavior of MEMS.
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